Some Guidelines for Mathematical Writing:

References on Writing: The following two pamphlets contain information on the writing of mathematical papers. There are copies in the library.

- Writing Mathematics Well by Leonard Gillman
- How to Write Mathematics by Paul Halmos
- A Primer of Mathematical Writing by Steven G. Krantz

1. Form for the bibliography

The examples which follow show the format for a journal article, an article from a book, and a book respectively. Notice that the items are listed in alphabetical order based on the author's last name.

[1] R. P. Boas, "Can We Make Mathematics Intelligible?", Amer. Math. Monthly 88(1981), 727-731.

[2] Paul R. Halmos, "How to Write Mathematics", in *Selecta, Expository Writing*, Springer, 1983, 157-186.

[3] John von Neumann and Oskar Morgenstern, *Theory of Games and Economic Behavior*, Princeton University Press, 1947.

2. To cite a reference

To cite a reference, do it in the following way.

It has been shown that there is a relationship between the number of evaluations per step in the Runge-Kutte methods and the order of the local truncation error [5,p.56] (where [5] is the number of the reference as listed in your bibliography.)

3. Writing Style

- Do not begin a sentence with a symbol. For example, instead of saying "G is an abelian group," write "The group G is abelian."
- One generally uses "we" instead of "I" when describing your plan, etc.
- Use the active voice in preference to the passive voice.
- Use examples liberally.
- If you begin a sentence with the word "if", then do not forget to include the word "then." Leaving out the "then" could confuse the reader.

4. Formatting

- Italicize terms being defined. (See the example in item 6.)
- Use standard notation. For example, the symbol f represents a function, the letter x a variable, the letter n a natural number.
- Put long or complicated expressions on a line by themselves.

• Leave a double space between symbols and adjacent text.

Example. "Let z be a complex number" as opposed to "Let z be a complex number." Example. "The function f is differentiable" as opposed to "The function f is differentiable."

• Do not use the symbols for "for all" or "there exists."

5. Form for Theorems:

Theorems and their proofs should be set off from the surrounding expository material. Proofs should be block-indented. Below is an example of the style we want. Pretend that the following is an excerpt from your paper.

BEGIN EXCERPT

The next theorem is a classic result in Calculus.

6.5 Theorem: If a function f is differentiable at a point a, then f is continuous at a.

Proof: We are given $f'(a) = \lim_{x \to a} \frac{(f(x) - f(a))}{(x-a)}$ and we need to prove that $\lim_{x \to a} f(x) = f(a)$. We have

$$f(x) = (x - a)\frac{f(x) - f(a)}{x - a} + f(a)$$

for $x \in dom(f), x \neq a$. Since $\lim_{x\to a} (x-a) = 0$ and $\lim_{x\to a} \frac{(f(x)-f(a))}{(x-a)}$ exists and is finite, Theorem 20.4(ii) shows that $\lim_{x\to a} (x-a) \frac{f(x)-f(a)}{x-a} = 0$. Therefore, $\lim_{x\to a} f(x) = f(a)$, as desired. QED

We will now provide an example of this theorem.

END EXCERPT

Note that we did not use a cute symbol to mark the end of the proof. You may use the symbol of your choice; QED or a box (\Box) are standard choices.

6. Numbering systems in the senior comprehensive paper

Each chapter should be numbered. Then each item in that chapter which needs to be numbered is assigned a number as follows: chapter number.ordinal number of the item. That is, the fifth numbered item in Chapter 2 is assigned the number 2.5

EXAMPLE:

Chapter 3 The Derivative

3.1 Definition: Let f be a function defined on some open interval (a,b) containing the point x_0 . The *derivative of* f at x_0 is

3.2 Example: Using the definition, we will compute the derivative of $f(x) = x^2$ at the point x = 3.

By the definition, $f'(x) = \dots$

3.3 Example:

3.4 Lemma:

Proof:

3.5 Theorem: If a function is differentiable at a point, then the function is continuous at that point.

Proof:

3.6 Corollary:

Proof:

3.7 Example: In Example 3.2, we showed that $f(x) = x^2$ is differentiable at x = 3. Thus, by Theorem 3.5, the function $f(x) = x^2$ is continuous at x = 3.