Markov Chains p.2

Markov chains

Markov chain models are used in situations in which there are a large number of objects or people which can be in any of several states (or conditions) and which move between these at fixed times. The key feature is that there is fixed probability (transition probability)  of moving from any state to any other state, and this probability does not change over time  and does not depend on any previous states. The models are used to study and predict the proportions of individual objects in each state at each time (and changes in this distribution) and to study the movements of individuals through the states.

The collection of all the objects is usually referred to as a system. The older (more formal) language refers to "a system which can be in any of several states, with a fixed transition probability between each pair of states" - we will see a few applications in this form; the language looks slightly different, but the work goes on the same way.

Example 1: A "market share"  or "compartments" model of brand switching:

The market for laundry detergent in East Bend is divided among three brands - A  B  and  C. The customers show some loyalty, but tend to switch brands at a predictable rate - always depending on the brand bought the previous week. In fact, we have the following percentage of buyers who switch.

Proportion of buyers who switch from one brand ("now") to another in the next week:




Next week


This week 
A
B
C




A
.4
.4
.2


B
.5
.4
.1


C
.3
.2
.5

Here the "objects in the system" are the customers
The "states" (A,  B,  C)  are the brand of detergent purchased.
The "time at which the transition occurs" is weekly (no changes in between)

The transition probabilities  (The probability that a person who buys  B  one week will buy A  the next week is .5 - we could write this as P(A in week k | B in week k-1) ) do not change from week to week and do not depend on any earlier history.

Questions we can ask of this model are:

1. What percent of  C  buyers this week will buy  B  next week?

2. What percent of  B  buyers this week will buy A  in the third week from now?

3. If this week  30% of customers buy  A ,  50% buy  B  and  20% buy  C ,  what will the proportions be next week? in four weeks?

4. If a consumer buys  B  this week, what is the probability the next time this person buys  B  will be the fifth week from now?

5. If a person buys A  this week, how long would we expect it to be (on the average) until the next time the person buys  A ?

6. Is there a "stable" distribution of market share that will develop over a long time?

Example 2:  A "system" example - a simplified model of weather prediction:

The weather in East Bend is either cloudy, rainy, or sunny. The weather on one day is affected by the weather the day before, but not by weather on earlier days. In fact, we have the following probabilities:

Table of probabilities for tomorrow's weather:




Tomorrow

Today 
Cloudy
Rainy
Sunny

Cloudy
.4
.4
.2

Rainy
.5
.4
.1

Sunny
.3
.2
.5

The "system" is the weather - by a stretch we could think of the days as objects, but the language gets weird.

The "states" are the weather conditions - (Cloudy, Rainy, Sunny)

Transition (change) occurs daily  (not in between)

The probabilities for the changes are always the same - as given in the table. There is no change depending on time (of year, of century,...) or on previous weather.

Questions we can ask of this model (and expect answers) are

1. If it is sunny today, what is the probability tomorrow will be rainy?

2. If it is rainy on a Tuesday, what is the probability it will be cloudy on Friday?

3. If the weather channel says "There is a   30% chance today will be cloudy, a  50% chance it will be  rainy,  and a 20% chance it will be cloudy"  what does this say about the chance that tomorrow will be sunny? what about four days from today?

4. If it is rainy Monday, what is the probability that the next rainy day will be Saturday?

5. If it is cloudy today, how long would we expect it to be (average) until the first rainy day?

6. Is there a "long-term average" distribution of weather types ?

In fact, the calculations for these two sets of questions are identical. We will adopt the assumption (in our language) that the proportion  of individuals who switch brands, or buy a certain brand,  is the same as the probability  that an individual will switch brands, or buy a certain brand. [and that the probability  that a day will be sunny is the same as the proportion of days, under the given circumstances, that are sunny]. The numbers in the table - the transition probabilities - are probabilities for specific changes - really conditional probabilities. (The probability of being in state C tomorrow if  we are in state A  today  is  .2)

Our definition of a Markov chain, then:

Markov Chain model

1. We are concerned with a system in which the elements can be in any of several distinct states. 

2. At discrete times, an element can move from one state to another.

3. At any time, each element must be in one and only one state. 

4. Transitions can occur only at the fixed times.

5. There are only finitely many different states (finite process)

6. The probability of transition from state  i  to state  j  at time  t  is the same at every time  t . (Stationarity). 

7. The probability of transition from state  i  to state  j  is not affected by the previous  (before time t) history of the system. (Markov property)
 (Classical language has the system moving between states - but otherwise everything is the same)

The information needed to set up a Markov chain model consists of a table of the transition probabilities, usually referred to as the transition matrix . We will use  P  (as in "probability" and "proportion") as the generic name for a transition matrix. The row  indicates the state we are moving from  the column  indicates the state we are moving to
For our example
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We will also use the notation pij for the number in row  i and  column  j  (the probability that an element in state i  will move to  state  j) .  [This makes  P  a stochastic matrix  - the essence of the Markov property is that the whole transition process can be described by one stochastic matrix]

The first question about our models is simply interpretation of the transition matrix

The probability of a customer changing from brand  C  to brand  B in one week is pCB which is  .2 - the probability is 20% .  Likewise the probability that a person who buys B  this week will buy  C  next week  is  pBC . This is   .1  (notice that the order matters)

Multi-step transition

Question 2 asks about the probability of a customer changing from brand  B  to brand  A  in three weeks (but without specifying what happens in the weeks between). To see how this works, we look first at  a simpler problem - the two week transition and then extend the method.

For the two-week transitions from B we can set up a tree diagram which shows the calculations for the probabilities:
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We can find the proportions for these, because we know the transition proportions from one brand to another no matter what happened before  (this is the idea of "independence"  in the probabilities) - so we find that 

Proportion of  B's  that buy  A  in two weeks (let's write this as  pBA(2) (the  2  is for 2 weeks - two steps, in general) is

pBA pAA + pBB pBA  + pBC pCA = (.5)(.4) + (.4)(.5) + (.1)(.3) = .43  That is,  43%  of this week's  B  buyers will be  A  buyers in two weeks.

What may not be obvious is that this calculation involves multiplying the  B  row (term by term)  times the  A  column  and adding up the results.  Generalizing, we can see how to get other probabilities:  to get  PAC(2) we would take  the  A  row ("from A")  times the  C  column ("to C"), and so on.

Of course, we could make up a two-step transition matrix P(2)   in which each entry  pij(2)  is the probability, if we start in  i ,  of being  in  j  after two steps  - we would get  pij by multiplying  row  i  of  P  by column  j  of  P  and  adding up the results.
In fact, this is simply the rule of matrix multiplication:


Definition: For two matrices  A  and  B  the product AxB  is the matrix  C  with entries 
[image: image26..pict] Here n = number of columns of  A  = number of rows of  B ;  if these are not the same, the product does not exist.

Notice this says (in symbols) exactly what we have been doing  - each row of the first matrix is multiplied term-by-term by a column of the second, the results are added and the number goes in the corresponding place (row & column)  of the product.

We can write this in symbols as  [image: image2.wmf]  (we add up the products from  k = 1  to k = 3)

Some examples (that we want for the next step)  pAA(2) = (.4)(.4) + (.4)(.5) + (.2)(.3) = .42

PCA(2) = (.3)(.4) + (.2)(.5) + (.5)(.3) = .37

In our case, 
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For the three-step transition  from  B  to  A (which the question asked for),   we can see we could use  write out all nine three-step paths from  B  to  A  (BAAA, BABA, BACA, BBAA,  etc.) or consider a one-step transition followed by a two-step transition to get

pBA(3) = pBA pAA(2) + pBB pBA(2)  + pBC pCA(2) - in general, we would have.
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So,  to answer our question,  pBA(3) = (.5)(.42) + (.4)(.43) + (.1)(.37) = .419  

(about 41.9% of  B  buyers one week will be  A  buyers in the third week following)
We could calculate all the three-step transition probabilities by calculating  P3 - that is (PxP)xP.
It is very convenient that P(k) = Pk  - probably this whole modeling technique would not have been developed, otherwise.

We will use the program MAPLE for most of our matrix manipulations (homework, examples, and tests).[ Most of the graphing calculators will also perform matrix manipulations - but they don’t also print out the results]

Distribution vectors.

For question  3 , we need to represent the distribution of customers among the brands. We do this by using a distribution vector  v = (vA, vB,vC)  (using vA = proportion of customers who buy  A ,  vB = proportion of customers who buy  B ,  etc.) 

What we want to find is the distribution  v(1) at time 1 (after one step of the process).

Since 30% of customers are buying  A  and  40% of these will continue to buy  A ,  the proportion of customers who buy A this week and next week is  (.3)(.4) = .12.  There are 50% buying B this week,  and 50% of these will buy  A  next week,  so (.5)(.5) = 25% of the customers are buying  B  this week but will buy A  next week.  Similarly,  (.2)(.3) = 6% are buying  C  this week but will buy  A  next week.

This accounts for all of this week's customers (the whole system), so the  proportion of customers buying  A  next week will be 
vA(1) =vA pAA + vB pBA + vC pCA = (.3)(.4) + (.5)(.5) + (.2)(.3) = 43%  A similar calculation for  B  shows  vB(1) = vA pAB + vB pBB + vC pCB = (.3)(.4) + (.5)(.4) + (.2)(.2) = 36%

In each case, we are multiplying the vector, term-by-term by the column of the transition matrix for the brand we want to move to .

This is, in fact, the same as matrix multiplication - with the vector being a long, low matrix.

Matrix multiplication is not commutative - the order matters  (AB   and  BA  are not the same matrix).  However, we will be multiplying powers  (P2  P3 etc.) of the same matrix, so the order won't matter. In multi[plying by a vector, we need the vector first  (vP  - not  Pv).

Thus we can say:

 The k-step transition matrix  P(k) is the same as Pk (P1 = P, as is usual with exponents)

The distribution vector after k steps  v(k)  is equal to  v(k-1) P  and  to  vPk .

Steady-state distribution 

Nice Markov chains have a steady state distribution - a distribution (represented by a distribution vector) which does not change as time goes on.

The steady-state distribution is given by a vector  vs which satisfies the equation

vs P = vs

For our market-share example with the soap, this gives us (if we let  vs = (vA, vB, vC) 



If we multiply this out, we obtain a system of three equations in three unknowns - but it is a dependent system [it will not have a unique solution -there are many solutions]. The reason the system is dependent is that the left side of each equation comes from one column of the matrix P - but the sum in each row is  1 - the third column contains no information that isn't in the other two.

However, we also want vA vB vC to be proportions of the market - they have to add up to  1 Thus we get the system










and solving this system of equations will give us the steady-state vector.

We solve this either by hand (using substitution) or by use of the augmented matrix, or (in this course) using MAPLE and we obtain:
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 (rounded to three places)

The steady-state distribution for this market is:  41.2% of consumers buy  A ,  35.3% of consumers buy  B ,  23.5% of consumers buy  C .  "Steady-state"  means that if this distribution ever occurs, there will be no further changes - each week from then on will show the same distribution.

We can also notice an interesting pattern here:
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By the time we look at 8 transitions,  no matter where a customer started, the probability of buying  A  is  .412 of buying  B is .253, and of buying  C  is  .235.

After several transitions, the rows of the transition matrices are approaching the steady-state distribution vector.
For these examples, the steady-state distribution is also the long-term distribution. No matter what the starting distribution, the long-term distribution approaches the steady-state. 

Two natural questions to ask are 


1. "Is there always a steady state distribution?"

 
2. "Will the process always approach the steady state distribution over time?"

Yes to both, if the chain is nice enough. To consider what "nice enough" means, we see what could prevent a chain from having a steady state it always approaches.

If the initial distribution does not matter, it must be possible for an element to move from any state to any state (otherwise elements starting in certain states could never get to others - and the rows of the transition matrix couldn't approach steady state). 

An ergodic chain is one in which it is possible to move from any state to any state. In the matrix, this says that no entry can be  0  for all powers of the matrix (if  pij(k)  were always  0 , that would say the system could never move from state  i  to state  j,  no matter how many transitions occurred)

Here is the transition matrix for a chain that is not ergodic  [System can't go from state 3 to state 1 - no matter how many steps are taken]


 EMBED "Equation" \* mergeformat  

    

    Looking  the multiplication rules, we can see that the 0 in row 3, column 1 will always be  0 , no matter how large a power of the matrix we take [same happens for all four of the zeros in that lower corner] . The initial distributions  (0, 0, .5, .5)  and  (.5, .5, 0, 0) will not give sequences approaching the same distribution

This isn't quite all, though: If the elements are "cycling" through several states: if elements from state  A  can only go to  B  in a certain number of steps, only go to  C  in a different number of steps, then certain initial distributions can't approach a steady-state distribution.

A Markov chain is regular  if there is some number  k  for which every transition is possible in exactly  k steps. In the matrix this says that some power of the matrix contains no zeros.  

Here is a transition matrix for an ergodic chain that is not regular [Can go from any state to any state - but can't go from  1  to 2 in an even number of steps and can't go from  1  to 3  in an odd number of steps - so every power of the matrix has at least one  0  - in position  12  or in position 13]  There is not steady state distribution for this process.


 EMBED "Equation" \* mergeformat  


For these reasons, steady-state distributions are not of interest (in applications) except for regular chains  The good news is that a regular chain will have a steady-state distribution and this will match the long-term distribution.

Two applications of steady-state
A machine is either  operating (U)  or down (D). In any hour that it is operating, there is an 80% probability that it will be operating the next hour.  In any hour when it is down, maintenance (or repair) work is going on, and there is a 60% chance that it will be operating in the next hour. For each hour it is up, it produces a profit of $75. For each hour it is down, it costs $40 for repair work. a.) From this information, we can calculate the average per-hour profit for this machine.

Model as Markov chain – states are “operating” (U) and “down” (D)

Transition matrix  (with order U , D) 


Clearly this is a regular chain. We can find the steady-state vector – it’s (.75, .25) [Over time, the machine will be up 75% of the time and down 25% of the time.]

For average profit we use expected value  each possible value of the profit is multiplied by the probability (“how much of the time”) and we add the results – so our average hourly profit is 75(.75) + (-40)(.25) = $46.25.

b.) We can go a bit further, and see how this information could be used for decision-making:

If a maintenance contract would change the probability of getting the machine back up in an hour from .6 to .7, would it be worth $100/week (The equivalent of $2.50 per hour, for a 40-hr. week)?

This would change the steady-state to (.78, .22), making the average profit equal to $49.70 per hour – an increase of $3.45 per hour – yes, that’s more than the cost, it would be worth the expense.
For our detergent market-share example, recall the steady-state distribution is 41.2% to A, 25.3% buying  B ,  23.5% buying  C .

Now suppose  company  C  is considering an advertising campaign to inspire brand loyalty, and they expect it will change the transition probabilities for the  C  row in the transition matrix to  .2 (C  to  A)  .1 (C  to  B)  and  .7 (C  to C). How will this change the long-term distribution in the market? If one percentage point of market share is worth  $10,000 over a certain period and the advertising campaign will cost $50,000 over the same period, is it worth the cost?

The new long-term distribution (the steady-state vector) would be 36.2% for A , 29.8%  for  B ,  34.0% for  C  - C  would  gain 9.5 percentage points  of market share - worth $95,000, so it would be worth  $50,000 if the campaign works as expected.

First transition

In ergodic chains (including regular chains) there are two additional questions we can answer.

1.)  If  an element is in state  i  what is the probability that the first time it will be in state  j  is after some number (say  k) of transitions? [Probability that first transition is after k steps]

2.) If an element is in state  i , how long (how many transitions) will it take for it to be in state  j  for the first time? [Mean first transition time]

For the machine dependability model,  

For our machine examples, question  1  takes the form “if the machine is operating now, what is the probability it will next break down in three hours? What is the probability it will not break down in the next three hours?  Etc.

For the machine example, question 2 takes the form:  When the machine is operating, how long will it run (on the average) until the next breakdown? If the machine is down, how long will it be (on the average) until it is up?

Steady-state probabilities will tell us the proportion of time the machine is up or down, but will not give the answers to these questions – we need further techniques for these.

Notation:  
qij qij(k) = probability, if system is in state i , that the first transition to state j will be after  k  transitions

Mij = average (mean) number of transitions to go from state i  to state j . 

Because  Mij  is the average number of steps, and  qij(k) is the probability of exactly k steps , we have a relation  Mij = 1*qij(1) + 2*qij(2) + . . . . + k*qij(k) + . . .

Probability of first transition

We calculate  qij(k) , for any  k , by a recursion formula:

qij(1) = probability of going from i to j in one step = pij
qij(2) = probability of going from  i to j in exactly two steps [without getting to  j  in one step and staying there] 
= pij(2) - qij(1) pjj 

and in general 

qij(k) = probability of going from  i  to  j  in exactly k steps [without  going through  j  along the way] 
 = pij(k) - qij(1)pjj(k-1) - qij(2)pij(k-2) - . . . . - qij(k-1)pij . 

For the machine dependability example, we first want qUD(3). We will need



  



qUD(1) = pUD = .2
qUD(2) = PUD(2) - qUD(1)pDD = .24 - (.2)(.4) = .16
qUD(3) = PUD(3) - qUD(1)pDD(2) - qUD(2)pDD =  .248 - (.2)(.28) - (.16)(.4) = .128

The probability that the first breakdown will be in one hour is  20%

The probability that the first breakdown will be in two hours (no breakdown at one hour, but a breakdown at two hours)  is 16%
The probability that the first break down will be in three hours (no breakdown in first or second hour, but machine is down in third hour) is 12.8%

The probability of a breakdown some time in the three hours is  .2 + .16 + .128 = .488, so the probability of no breakdown in the next three hours is 1 - .488 = .512.

For the soap market share example, if a customer buys brand  A  this week, the probability that the first time the customer will buy brand  B  is three weeks later is calculated by:

qAB(1) = pAB = .4

qAB(2) = pAB(2) - qAB(1) pBB = .36 - (.4)(.4) = .20

qAB(3) = pAB(3) – qAB(1)pBB(2) - qAB(2)pAB =  .414 -  (.4)(.38) - (.20)(.4) = .182

The probability the customer (buying A this week) will have bought B at least once after three more weeks is 
qAB(1) + qAB(2) + qAB(3) = .782
[It isn’t pAB + pAB(2) + pAB(3) - these probabilities overlap, so they can’t be added]

Mean time for first transition

To calculate the mean time for first transition, we go back to the definition of mean [expected value, average value]:




which is all very well, but isn't easy to calculate directly.
We use a recursion idea (again) to simplify this. We look at the contribution to the mean of each of the possible first steps of the process:

Whatever happens, we use one step. We use more than one step if and only if the first step takes us to any state but  j . For each of these possibilities, we will add to the average the average time to go from this new state to j, weighted by the probability of going to this state. 


We get:
 


(One step, plus, for each state other than j , the probability of going from i  to  j  times the average time for the first transition to j  from this other state)

This does not give us a direct formula  for finding Mij. However, several other means will appear in the equation.  

If we apply the same rule to each of these means, we will obtain a set of n-1  equations  in  n-1 variables (n = number of states).

For the machine dependability example our question asks for  MUD
We have 

MUD = 1 + pUUMUD =1 +  .8 MUD 

So  .2 MUD = 1   and  MUD = 5  - The average time until the machine is down (if it is now up) is 5 hours.

The process is a little clearer with more states: 

Market share example

In the detergent market share example, the average time for a customer buying  A  to first try  B  is  MAB and we find:

MAB = 1 + pAAMAB + pACMCB = 1 + .4MAB + .2MCB
MCB = 1 +  pCAMAB + pCCMCB  = 1 + .3MAB + .5MCB

Solving (by hand or with Maple) we find 

MAB = 2.92  MCB = 3.75

That is, a customer who buys A this week will first buy  B  in  2.9 weeks (on the average).

This calculation breaks down (we don’t get nice equations)  for first recurrence time  that is, for  MAA  MBB  , etc.  However,  MAA  is the reciprocal of the steady-stated probability for  A, so we have a nice way to find it in this case, too. 

Formulas, equations

Steady-state probabilities (proportions) come from solving the matrix equation 

For a regular chain, steady-state probabilities (proportions)  correspond to long-term probabilities

qij(k)  is the probability, of going from state  i  to state  j   in exactly  k  steps.

qij(k) = pij(k) - qij(1)pjj(k-1) - qij(2)pij(k-2) +… +qij(k-1)pij 

Mij   is the mean number of steps to go from  state i  to state  j  for the first time
 

  for i  j 
 

  (pi  is the long-term (steady-state)  probability of being in state i )

Absorbing Chains

Types of states:
There are certain special cases that can occur with the states in a Markov chain. They are classified depending on what can happen if the system is in the state.

A state is transitive  if the system (or a member of the system) can leave but cannot return.

A states is recurrent if, once the system reaches the state, it must  return (or never leaves).

A state is absorbing  if, once the system reaches the state, it can never leave.

A state is periodic  if, once it reaches the state, it must return in a fixed number of steps (always the same number.
These are all special types – most states are none of these.
Absorbing Chains

A Markov chain is an absorbing chain  if 
1. It has at least one absorbing state   and 
2. Each object in the system must eventually reach an absorbing state.

An Example

The gambler (exercise 7) gives an example of an absorbing Markov chain – the absorbing states are $0  and $5, and he eventually ends up in one or the other, no matter what amount he starts with.

The transition matrix is 



0
1
2
3
4
5



P = 
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For absorbing chains, there isn’t a steady-state as there would be for a regular chain, and we can’t be sure that the system does get to any particular state, so first-passage time is also not interesting] The interesting questions for absorbing chains are 

1. What proportion of elements winds up in each absorbing state [or, for the gambler, what proportion of days does he end up with $0 and what proportion does he end up with$5]? [The only possible form of the answer depends on the starting state – for an overall answer, we would need the initial distribution vector]

2. How long does it take an element to be absorbed [for the gambler, how long does he play – on the average – before reaching a state where he stops playing]?[Again, the answer will require either knowing the initial distribution or giving results in terms of the starting states.]

In order to make the work easier, we usually sort the states into absorbing and nonabsorbing states and list the absorbing states first. This makes our matrix look like:



0
5
1
2
3
4
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The matrix can be thought of as having four parts  I  0  A  and  N – an Identity matrix, a matrix of 0’s, the matrix for the system being Absorbed and the matrix for the Non-absorbing states – put together in this way:
P = 
[image: image8.wmf]
I  is always square, with 1’s (for state S  to state  S transition) on the diagonal and 0’s everywhere else.  0 is not necessarily square – it is full of 0’s because the system cannot go from an absorbing state to any other state. A  is not necessarily square – it shows the transition probabilities from  non-absorbing to  Absorbing states. N  is square and shows the transition probabilities from non-absorbing to Non-absorbing states (the rows in N don’t all add up to 1 – because the system will move out of the non-absorbing states - we would need A  and  N  together to get complete rows of P].
For the gambler,   
[image: image9.wmf]  and 
[image: image10.wmf]
Examples of the big questions:

First type: If the gambler starts with $3  what is the probability he will end up with $5 [The new element here is  that the number of plays isn’t included in the question]
If he starts with $1, what are his probabilities for ending up with $5  or with $0?
Second type: If the gambler starts with $2, how long does he play (on the average)?

If the gambler starts with $4, how many times (how many plays – on the average) will he have $4?  $3?  $1?

The analysis for finding the answers:

[image: image20.wmf]Looking at the probabilities for several steps (and at the way matrix multiplication works) 
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There are some important relationships hiding here. You can check by multiplying that:

I. N(2) = N*N,  N(3) = N*N*N and, in general,  N(k) = Nk   for any number of steps k. In addition (this really isn't obvious at first) 

II. A(2) = A + N*A , A(3) = A+N*A + N(2)*A and, in general A(k) = A + N*A + N2*A + .. . .+ N(k-1)*A for any number of steps  k.


The reason:  If  the system goes from a non-absorbing state to another non-absorbing state in two steps,, it had to be in a nonabsorbing state in between.  The probability that the gambler goes from  $1  to $3 in two steps is a sum of probabilities:  for 1-2-3,  for 1-3-3, and  for 1-4-3. [Because $0   and $5 are absorbing states, we don't even think about paths that go through them] and   . Two of these probabilities are 0's (can't go 1-3 or 1-4 in one step), but these are all the general logical possibilities. Thus the $1 to $3 entry in N(2)  is exactly the product of the $1 row (from $1)  of  N  with the $3 column (to $3)  of N . [The "A-part" of the row in P  is multiplied by the "0-part" of the column in P - so it has no effect].. Similarly, to still be in a non-absorbing state ($1, $2, $3, $4)  after k steps, the gambler must have stayed in non-absorbing states the whole time - probabilities are given by powers of  N.

Similarly, the  $1 row of  A  gives the probabilities for going from $1 to either $0 or $5  in one step. The $1 row of A(2) gives the probabilities, after starting with $1, for having $0 or $1 after two steps. There are two ways this can happen [this echoes some of our "first passage" calculations] - get to $0 or $5 in one step (probabilities given in A)  or stay in the game for one step (probabilities given in N)  and then go to $0 or $5  at the second step (probabilities given by A) - probabilities for reaching  $0 or $5 at  the second step given by  N*A - so the probabilities for having  $0 or $1 after two steps are given by  A + N*A.  Similarly, if the gambler has  $0  or $5  after three steps, he reached that state after one step (probabilities given by A) or after two steps (probabilities given by N*A)  or three steps (probabilities given by N(2)*A = N2*A)  so the total probabilities are given by  A + N*A + N2*A.  And so on for larger numbers of steps.

And so:


A(k) gives the probability of having been absorbed (after  k  steps) into each "final" state for each possible starting state.  and A(k) = A + N*A + N2*A + .. . .+ N(k-1)*A 

N(k)  gives the probability of being in each non-absorbing state (after k steps) for each possible starting state. and N(k) = Nk.

For questions of the first type, we really want A((), to give the total probabilities for absorption.  [We know N(()  (is all zeros, because eventually the gambler ends up in one of the absorbing states]

We know

A(()= A + N*A +N2*A + N3*A+ . . . = (I + N + N2  + N3 + . . .)A

To calculate this directly,  we'd need limit ideas, but we can take advantage of:

A clever observation:
 (I - N) (I +N + N2  + N3 + . . .) = I  (if we take all powers of   N  in the parentheses, then every power cancels in the multiplication) , we can say that 


(I + N + N EQ \s\up5(2) + N EQ \s\up5(3) + . . .)  is the inverse of the matrix I-N. (The inverse  of a square matrix  M  is a matrix  B  for which  B*M = I. Not all matrices have inverses, but our  N  matrices do - and we can find them with Maple - or with a calculator that handles matrix arithmetic)

We call this the fundamental matrix F 

The fundamental matrix of an absorbing chain is the matrix  F = Inverse(I-N) (written (I-N) EQ \s\up5(-1))  [but cannot be written  EQ \f(1,I-N) since division of matrices has no meaning]

FA gives the probabilities of absorption. [Notice that in FA the row entries must add up to 1 again - these are probabilities for transition to all possible states(for long term)]
As a bonus F gives the expected number of transitions through which an element will be in each non-absorbing state (so F contains the information to answer our second question)

For the gambler model,
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This tells us:  If the gambler starts with  $1 (first row of  N, A, F, FA) then 92% of the time he ends up with $0 (he's broke - he lost his dollar), and 8% of the time he ends up with $5 (he wins - and makes $4) . (He stands a .92 chance of going broke and an .08 chance of winning).  On the average (when he starts sith $1) he will have $1 on 1.54 of the plays,  $2 on .9 plays , $3 on .47 plays  and  $4 on .19 plays  - so he will play  1.54 + .90 + .47 + .19 =3.10  times (on the average when he starts with $1)

If he starts with $3 he has a .64 chance of going broke (reaching $0 - losing $3) and a .36 chance of reaching $5 (a profit of $2). On the average, he plays 1.07 + 1.78 + 2.25 + .90 = 6.00 times - so he gets to play longer (on the average) if he starts with $3 than if he starts with $1

Etc.

From this,  can figure his average winnings for different starting amounts:
Starting with $1, his expected winning is  .92(-1) + .08(+4) = -.60  - he loses $.60 (per night) on the average starting with $1.

Starting with $3, his expected amount to win is .64(-3) +.36(+2) = -1.20 - he loses $1.20 on the average, if he starts with  $3.  

Although he has a better chance of reaching $5 if he starts with $3 , he loses more money that way (because the amount he loses is larger).


We can even figure the average loss per game:
If he starts with $1, he loses .60 (average) in 3.10 games (average) for an average loss of $.19 per game.

If he starts with $3, he loses 1.20 (average) in 6.00 games (average) for an average loss of $.20 per game

We cannot give his overall probability for winning (or for going broke), or how long he plays on the average (or average winnings/losses, or average winning/loss per game),  unless we have the distribution of his starting states.
If we take the distribution from exercise 7 (20% $1, 30% $2, 40% $3, 10% $4) then we can figure his overall probability of winning/losing by taking v=(.2,.3,.4,.1) times FA  (notice this vector is in a different order from our work on ex. 7 because the order of states in the matrix has been changed).  With this distribution, he will lose (hit $0) 72% of the time and win 28% of the time.

This becomes more important if we start applying this type of calculation to stock market transactions (according to one theory, changes in stock prices can be modeled by a Markov chain model - and certain buy/sell policies will lead to absorbing chains) or marketing decisions, where large amounts of real money can be involved.

Another example:  [Used in Activity 1] 
Consider a job-training program which is intended to run for two years. Some of the first-year (level I) trainees do not complete the work in one year, and remain classified as level I trainees for another year. Similarly, some of the second-year (level II) trainees remain level II for another year. Some of the trainees leave without finishing the program - these are classed as "L" in the records to distinguish them from those who have finished (classified "F")

Since those who leave or who finish do not return, and everyone eventually leaves or finishes, the movement of trainees through the program can be modeled by an absorbing Markov chain. The states are :Level I, Level II, Finished, Left and the transition matrix in standard form is

 




so that   

  and    


For two-year transitions:





 and 


The probability a Level I trainee will finished within 2 years is AIF(2) = .49  

The probability a Level II trainee will leave(without finishing) within 2 years is   AIIL(2) = .12

The probability a Level I trainee is still in the program after 2 years is  NI,I(2 ) + NI,II(2) = .22

For the long term:
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That is, 68% of all trainees that enter at level I eventually finish; 32% leave without finishing.
 Of those who make it to level II, 88% finish and 12% leave without finishing.

On the average, trainees who start at level I spend  2.08 years in the program. 
On the average, students who have reached level II spend 1.25 more years in the program.

If all trainees start at level I, we know the distribution of states and can say the chance that a trainee will complete the program is 68%.

If some trainees can start at level II (maybe transferring from other programs or other cities, or passing a skills test) then we cannot say what percent of all trainees will complete the program without knowing the distribution of level I and level II trainees [That is, we cannot answer general questions about the whole system without knowing the starting distribution].
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