
Math 438 ACTIVITY 24: Constrained Optimization: Kuhn-Tucker Conditions

Why

In general, an optimization problem will involve both equality and inequality constraints. Using and extending
the method of Lagrange multipliers, we extend the method of Section 5.1(for non-negativity constraints) to
more general inequality constraints and combine them with equality constraints. The resulting set of conditions
is called the Kuhn-Tucker conditions, and we consider these now. We also look at one (rather specialized) set
of sufficient conditions for optimality.

LEARNING OBJECTIVES

1. Review the methods of finding potential min points for the cases of non-negativity constraints and equality con-
straints.

2. Understand how our conditions change when we move from equality constraints to inequality constraints.

3. Understand how the Kuhn-Tucker conditions combine the previous methods for dealing with equality constraints
and inequality constraints.

4. Be able to use the Kuhn-Tucker conditions to find potential optimal points, and be able to test for optimality.

5. Transfer knowledge from solving unconstrained problems to help in the solution to constrained problems.

CRITERIA

1. Success in completing the exercises.

2. Success in involving all members of the team in the solution

3. Understanding the conditions for the Kuhn-Tucker problem..

RESOURCES

1. Section 5.3 of Strategic Mathematics

2. Typed notes

3. 50 minutes

PLAN

1. Before class: read the text and examples

2. Before class: read the discussion and the model

3. In class: Complete the exercise.

VOCABULARY

Kuhn-Tucker conditions

The following conditions are necessary for a point X0 to solve the problem:

minimize f(X)
subject to gk(X) ≥ 0 for k = 1, 2, . . . ,K [always in form “≥”] and hj(X) = 0 for j = 1, 2, . . . , J .

Define the Lagrangian Function F (X,U,V) = f(X) − ukgk(X) − vjhj(X) . The necessary conditions for a
point X0 to give a local maximum or local minimum subject to the constraints are called the Kuhn Tucker
Conditions:

1. ∇f(X0)−
∑
uk∇gk(X0)−

∑
vj∇hj(X0) = 0

2. gk(X0) ≥ 0 for k = 1, 2, . . . ,K

3. hj(X0) = 0 for j = 1, 2, . . . , J

4. ukgk(X0) = 0 for k = 1, 2, . . . ,K

5. uk ≥ 0 for k = 1, 2, . . . ,K
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Theorem 5.3.2 Let f be convex, the equality constraints all linear and the inequality constraints all concave. If a point
(X0,U0,V0) satisfies the Kuhn-Tucker conditions, then X0 is the optimal solution to the problem.

DISCUSSION

The Kuhn-Tucker conditions are necessary (but not sufficient) conditions for a point X0 to be a stationary
point for the function, subject to the constraints (a candidate for an optimal point). The theorem gives a set
of sufficient (but not necessary) conditions for a point satisfying the first set of conditions to be optimal.

Note the inequality constraints (of the form gk ≥ 0) are always converted to “≥” form and are distinguished
from the equality constraints (of the form hj = 0). The numbers uk and vj are Lagrange multipliers. Conditions
1 and 3 are the “partials with respect to the xi and hj are 0” condition included in theorem 5.2.5 (for equality
constraints). Conditions 2, 3 say that our optimal point must be a feasible point (satisfying the constraints).
Conditions 2, 4, 5 together extend our technique for non-negativity constraints (xj ≥ 0) to more general
inequalities (directional derivative along the boundary must be 0, directional derivative pointing into the
feasible region must be 0 or positive) and combine them with the requirements for equality constraints.

MODEL

We will consider the problem:

Maximize 3.6x1 − 0.4x2
1 + 1.6x2 − 0.2x2
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Subject to 2x1 + x2 ≤ 10, x1 ≥ 0, x2 ≥ 0

We must first put the problem in proper form, re writing it as:

Minimize z = −3.6x1 + 0.4x2
1 − 1.6x2 + 0.2x2
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Subject to 10− 2x1 − x2 ≥ 0, x1 ≥ 0, x2 ≥ 0

There are no equality constraints in this problem. We have:

F (X,U,V) = −3.6x1 + 0.4x2
1 − 1.6x2 + 0.2x2

2 − (u1(10− 2x1 − x2) + u2x1 + u3x2)

the Kuhn-Tucker conditions give us:

1. ∂
∂x1

F = −3.6 + 0.8x1 + 2u1 − u2 = 0 (Condition 1 - first coordinate)

2. ∂
∂x2

F = −1.6 + 0.4x2 + u1 − u3 = 0 (Condition 1, second coordinate)

3. g1(x1, x2) = 10− 2x1 − 2x2 ≥ 0 (Condition 2, first inequality)

4. g2(x1, x2) = x1 ≥ 0 (Condition 2, second inequality)

5. g3(x1, x2) = x2 ≥ 0 (Condition 2, third inequality)

6. u1g1 = u1(10− x1 − x2) = 0 (Condition 4, first inequality)

7. u2g2 = u2x2 = 0 (Condition 4, second inequality)

8. u3g3 = u3x2 = 0 (Condition 4, third inequality)

9. u1 ≥ 0 (Condition 5)

10. u2 ≥ 0 (Condition 5)

11. u3 ≥ 0 (Condition 5)

We start with Conditions 4 and 5 and consider whether the uk’s can be 0.
If u1 = 0, u2 = 0, u3 = 0, then (From 1 and 2) x1 = 3.6/.8 = 4.5 and x2 = 1.6/.4 = 4 but this violates # 3
(because 10− 2(4.5)− 4 = −3, which is not at least 0), so the uk’s cannot all be 0.
If u1 = 0 and u2 = 0, then u3 > 0 and #8 says x2 = 0—but then #2 becomes −1.6 − u3 = 0 which is not
possible with u3 > 0.
If u1 = 0 and u2 > 0, then #7 says x1 = 0—but then #1 becomes −3.6− u2 = 0, which is not possible with
u2 > 0.
Thus it is not possible for u1 to be 0. We must have u1 > 0, so 2x1 + x2 = 10 (#6).
If u2 = 0 and u3 = 0, then substituting 10 − 2x1 for x2 (from #3) in (#2), and adding it to (#1), we get
−1.2 + 3u1 = 0 or u1 = 0.4. Substituting back into ($1) and ($2) we get x1 = 3.5 and x2 = 3. This satisfies
all the conditions and may be the minimum point for z . [Substituting this point into the original—to be
maximized—function, we would get a maximum 12.9.]
If u2 > 0 and u3 = 0, then (#7) x1 = 0 so x2 = 10 and ( #2)−1.6 + 4 + u1 = 0 — which is impossible with
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u1 > 0.
If u2 > 0 and u3 > 0 then (#7 & #8) x1 = 0 = x2—which is impossible because we must have 2x1 + x2 = 10.
If u2 = 0 and u3 > 0 (only remaining case) then x2 = 0 so x1 = 5 and (#1)−3.6 + 4 + u1 = 0 , which is
impossible with u1 > 0. Thus our only possible point for a minimum for z is (3.5, 3). The Hessian of f is

H =
[
.8 0
0 .4

]
which is positive definite everywhere, so f is convex at this point (and at every other point).

Since our constraints are all concave (affine functions—so concave), Theorem 5.3.2. says that (3.5, 3) is our
optimal points, giving a minimum values−1.29 for z.
Our solution for the original (maximization) problem is x1 = 3.5, x2 = 3, with value f = 1.29

EXERCISE

1. In the model the equality conditions 6, 7, and 8 determine the possible cases we need to look at to exhaust the
possible solutions for the Kuhn Tucker conditions. How many possible cases are there in this problem? List them.

2. How many cases did we actually list separately and test in solving the problem in the model?

3. By showing that u1 = 0 and u2 > 0 is not possible, how many of the possible cases [from 1.] did this eliminate (or
cover)?

4. Show that: If a problem has only equality constraints and nonnegative variables, the Kuhn Tucker conditions are
the same [with different notation] as the conditions given in Theorem 5.2.12. [Hint: In this case all the inequality
constraints are of the form xk ≥ 0; that is, gk(X) = xk With this information, solve 1st KT condition for uk’s and
rewrite the conditions—the vj (here) will take the place of the λj (of theorem 5.2.12) and the hj of this version are
the gj of 5.2.12.]

5. Set up and solve problem 5.17 on page 186.
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