Analysis Lab 4

Topic: Experience with the Definition of the Limit of a Sequence

Guidelines for Lab Report

For this lab, submit a report according to guidelines given below.

- 1. Fill in the entries of the table from Section 2 on page 2 of this guide. Submit your responses to Questions 2-4 in the space provided.
- 2. For Section 3, submit your answers to Questions 1-4.
- 3. For Section 4, find the formula for N for each sequence, and enter this into the table, along with the specific value of N specified in Question 3. Submit a formal proof for each sequence.
- 4. Complete the Questions for Reflection as assigned by your instructor. Write your response for each question on a separate sheet(s), and attach to the rest of this report.

2 Using Examples to Enhance Understanding

Fill in the cells in the table below according to the directions provided in 1(a)-(d) of Section 2 of the lab.

Sequence	$\begin{bmatrix} \text{Limit} \\ \text{or } L \end{bmatrix}$	$\begin{array}{l} N \text{value} \\ \text{for } \epsilon = .2 \end{array}$	$\begin{array}{c} N \text{value} \\ \text{for } \epsilon = .1 \end{array}$	$\begin{array}{l} N \text{value} \\ \text{for } \epsilon = .05 \end{array}$	$\begin{bmatrix} \text{Test} \\ n \end{bmatrix}$	$ s_n - L $ for test n	Is $ s_n - L < .05?$
$(a_n)_{n=1}^{\infty}$							
$(b_n)_{n=1}^{\infty}$							
$(c_n)_{n=1}^{\infty}$							
$(d_n)_{n=1}^{\infty}$							
$(e_n)_{n=1}^{\infty}$							
$(f_n)_{n=1}^{\infty}$							

In the space provided, submit your answers to Questions 2-4. Use additional sheets(s), if necessary.

3 An Algebraic Way to Find N

Use the space provided below to answer Question 1-4 at the end of this section. Use additional sheet(s), if necessary.

4 Critical Thinking Questions

Enter the formula for N in Column 1. Use the formula to find a value of N for $\epsilon = .05$, and enter this in Column 2.

Sequence	Formula for N value	N for $\epsilon = .05$
$(a_n)_{n=1}^{\infty}$		
$(b_n)_{n=1}^{\infty}$		
$(c_n)_{n=1}^{\infty}$		
$(d_n)_{n=1}^{\infty}$		
$(e_n)_{n=1}^{\infty}$		
$(f_n)_{n=1}^{\infty}$		

Write a formal proof for each of the sequences (a_n) , (b_n) , (c_n) , (d_n) , (e_n) , and (f_n) . Attach additional sheet(s), if necessary.